Making Hash Crystals Instead of “Dabbing”

This article is to help readers to understand that “dabbing,” which is using hash oils, can be replaced by using the crystalline form of THC. There are still some people that think THC cannot be refined to its’ pure crystalline form.

Isolation of pure cannabidiol

If completely clear THC (a clear, thin, colorless oil) is desired, it is necessary first to isolate pure cannabidiol from the chromatographed oil by converting it to cannabidiol-bis-3,5-dinitrobenzoate. This is then converted back into pure cannabidiol, which is now in the form of white crystalline prisms. The process for this operation is found on pages 456 and 457 of the Lloydia (“The Preparation and Analysis of Enriched and Pure Cannabinoids from Marihuana and Hashish.” Lloydia Journal of Natural Products 33 (1970): 453-60); a description of it follows.

Cannabidiol-bis-3,5-dinitrobenzoate is made by rapidly adding 300 gm fresh 3,5- dinitrobenzoyl chloride (m.p. 68—69°C) to a mechanically stirred solution of a chromatographed hashish extract in dry pyridine at 0° under nitrogen. The mixture was stirred for 15 minutes, then warmed in a 60°C hot water bath for 30 minutes. This mixture was then poured into a mixture of 200 gm of ice and 300 ml concentrated hydrochloric acid and extracted with ethyl acetate (750 ml). The precipitate was filtered and washed with another 750 ml ethyl acetate. The aqueous phase was separated and washed with 500 ml ethyl acetate. The combined organic phases were washed with aqueous sodium bicarbonate (2 x 200 ml) followed by 300 ml distilled water and dried over CaSO4. The solvent was removed in vacuum to yield 340 gm of a dark oil. This was purified by crystallization from 1800 ml ethyl ether, yielding 194 gm of off-white powdered cannabidiol-bis-3,5-dinitrobenzoate melting at 97—101°C.

Pure cannabidiol is made by adding 220 ml of liquid ammonia to a solution of 288 gm cannabidiol-bis-3,5dinitrobenzoate in anhydrous toluene (400 ml) at -70°C in a Parr bomb. The sealed apparatus was mechanically stirred. During five hours the pressure built to 110 psi and the temperature rose to 20°C. The ammonia fumes were released overnight. The product was dissolved in heptane (400 ml) and insoluble 3,5-dinitrobenzamide was removed by filtration. The precipitate was washed twice with 150 ml heptane. The heptane solutions were combined and washed with boiling water (5 x 200 ml) and the solvent removed in vacuum to yield 120 gm of a dark oil. Chromatography on 180 gm of this product on 3400 gm of Florisil and elution with 30% chloroform in hexane yielded oily cannabidiol (140 gm).

Crystallization from 30—60° petroleum ether yielded 99.2 gm white prisms, and
recrystallization gave 94.8 gm pure cannabidiol.

Conversion of Pure Cannabidiol to Pure THC

The crystalline prisms of cannabidiol are converted to pure THC utilizing a formula of Roger Adams found on page 2211 of volume 63 of the Journal of the American Chemistry Society. The following is a description of a method for producing pure THC.

Isomerizing the cannabidiol with sulfuric acid

One drop of 100% sulfuric acid was added to a mixture of 1.94 gm crystalline cannabidiol in 35 cc cyclohexane. After refluxing for one hour, the alkaline beam test was negative. The solution was
decanted from the sulfuric acid, then was washed twice with aqueous 5% bicarbonate solution and twice with water. It was then evaporated. This residue was distilled under reduced pressure to yield pure THC with a rotation range of 259° to 269°.

Subscribe
Notify of
2 Comments
Newest
Oldest Most Voted
Inline Feedbacks
View all comments

This is really interesting, You’re a very skilled blogger.

I’ve joined your rss feed and look forward to seeking more of your excellent post.
Also, I’ve shared your site in my social networks!

Appreciate the recommendation. Let me try it out.

escort atasehir istanbul eskort mersin oruspu samsun escort escort bostanci escort antalya konyada escort